Where are we?

- Lots of Layout issues
 - Line of diffusion style
 - Power pitch
 - Bit-slice pitch
 - Routing strategies
 - Transistor sizing
 - Wire sizing

Layout - Line of Diffusion

- Very common layout method
 - Start with a “line of diffusion” for each transistor type
 - Cross with poly to make transistors
 - This is the “type 2” NOR gate
Line of Diffusion in General

- VDD
- P-type
- N-type
- GND

- Start with lines of diffusion for each transistor type
Cross with Poly to make transistors

Now break and connect diffusion

There’s our NOR gate
Line of Diffusion in General

Now break and connect diffusion
• There’s our NOR gate

Stick Diagrams

• You can plan things with paper and pencil using Stick Diagrams – Great for sketchbooks!!!!
 • You’ll need colored pencils
 • Draw lines for layers instead of rectangles
 • Then you can translate to layout
Gate Layout

- Layout can be very time consuming
 - Design gates to fit together nicely
 - Build a library of standard cells
- Standard cell design methodology
 - V_{DD} and GND should abut (standard height)
 - Adjacent gates should satisfy design rules
 - nMOS at bottom and pMOS at top
 - All gates include well and substrate contacts
Example: Inverter

- Horizontal N-diffusion and p-diffusion strips
- Vertical polysilicon gates
- Metal1 V_{DD} rail at top
- Metal1 GND rail at bottom
- 32 \lambda by 40 \lambda
- 9.6 \mu m x 12 \mu m

Example: NAND3
Stick Diagrams

- *Stick diagrams* help plan layout quickly
 - Need not be to scale
 - Draw with color pencils

Wiring Tracks

- A *wiring track* is the space required for a wire
 - 1.2µ width, 1.2µ spacing from neighbor results in 2.4µ pitch
- Transistors also consume one wiring track

In our rules M1 and M2 width & spacing is 3λ, so pitch is 1.8µ
Well spacing

- Wells must surround transistors by 1.8\(\mu\)
 - Implies 3.6\(\mu\) (12\(\lambda\)) between opposite transistor flavors
 - Leaves room for one wire track

Area Estimation

- Estimate area by counting wiring tracks
 - Multiply by 8 to express in \(\lambda\), or by 2.4 to express in microns
Example: O3AI

- Sketch a stick diagram for O3AI and estimate area

 \[Y = (A + B + C) \cdot \overline{D} \]
Example: O3AI

Sketch a stick diagram for O3AI and estimate area

\[Y = (A + B + C) \cdot \overline{D} \]

\[\begin{array}{cccc}
 & A & B & C & D \\
\hline
Vdd & & & & \\
Y & & & & \\
A & B & C & D & \text{GND}
\end{array} \]
Example: O3AI

- Sketch a stick diagram for O3AI and estimate area
 \[Y = (A + B + C) \cdot \overline{D} \]

\[\begin{array}{cccc}
 A & B & C & D \\
 \hline
 \text{Vdd} & \text{Y} & \text{GND} \\
\end{array} \]
Sketch a stick diagram for O3AI and estimate area

\[Y = (A + B + C) \cdot \overline{D} \]
Example: O3AI

Sketch a stick diagram for O3AI and estimate area

\[Y = (A + B + C) \cdot \overline{D} \]

\[\overline{A} \overline{B} \overline{C} \overline{D} \]

Example: O3AI

Sketch a stick diagram for O3AI and estimate area

\[Y = (A + B + C) \cdot \overline{D} \]

\[\overline{A} \overline{B} \overline{C} \overline{D} \]
Example: O3AI

- Sketch a stick diagram for O3AI and estimate area
 \[Y = (A + B + C)gD \]

Euler Paths

- A graphical method for planning complex gate layout
 - Take the transistor netlist and draw it as a graph
 - Note that the pull-up and pull-down trees can be duals of each other
 - Find a path that traverses the graph with the same variable ordering for pull-up and pull-down graphs
 - This guides you to a line of diffusion layout
Simple example: NOR

- Euler path is a tour of all edges
- Find a path that has the same ordering for pull-up and pull-down, i.e. A B
 - Vdd A 1 B Out
 - GND A Out B GND

Another great bit of sketchbooking…

This Path Translates to Layout

- Find a path that has the same ordering for pull-up and pull-down, e.g. A B
 - You can also include all the internal nodes
 - Pull-up: Vdd A 1 B Out
 - Pull-Down: GND A Out B GND
 - Line of diffusion layout
Examples

- Switch to chalkboard for examples
 - Hopefully with colored chalk...

Layout Example: Flip Flop

- Simple D-type edge triggered flip flop
Need two copies of this for a full D flip flop
Need two copies of this for a full D flip flop.

First add the gates.
- Note where outputs can be shared
- Ignore details of signal crossings for now…
First add the gates
- Note where outputs can be shared
- Ignore details of signal crossings for now…
First add the gates
 - Note where the signals are relative to the schematic
 - Note where additional connections are needed

Start With First Enabled Inv

- I’m using 5u power wires, 29u vertical pitch based on a C5x standard cell model from AMI
 - Probably overkill…
- Add DIF for N- and P-type transistors
 - Note 2x standard size because of series connection
Add Next Enabled Inverter

- Add two more poly gates for second enabled inverter
- Note that the two enabled inverters share an output (not connected yet)
- Note that I’ve added vdd! and gnd! For DRC
- I’ll deal with C-Cb crossover later…

Aside: Multiple Contacts

- Look at a model of transistor resistance
Contact Option #1

- Total equivalent resistance = 56.1 Ohms
 - Metal resistance = 0.05 Ω/square
 - Contact resistance = 5 Ω/contact
 - Active resistance = 70 Ω/square
 - Gate resistance = 50 Ω/square
 - Active resistance 70 - contact to gate

Contact Option #2

- Total equivalent resistance = 105.1 Ohms
Contact Option #3

- Total equivalent resistance = 24.7 Ohms
- So, put in as many contacts as will fit along side a wide gate…

Meanwhile, Add inverter

- Note that it’s back to standard size
- Shares vdd/gnd connection with enabled inverter
- Minimum spacing for all transistors so far
 - Incremental DRC at EVERY step!
Finish Inverter (mostly)

- Make inverter output connections
 - Don’t connect yet
 - I’m going to use M1 as a horizontal layer
 - Which means being careful about vertical use of M1

Make Feedback Connections

- Output of inverter (connected in M1 for now) goes to input of 2nd enabled inverter
- Output of enabled inverters goes to input of inverter
 - Note that output of enabled inverters goes through POLY
Deal With C/Cb Crossover

- Start by cutting the “select” gates of the enabled inverters

Connect the C Input

- Prepare for M1 crossover in C wire
 - C is N-type in first enabled inverter, P-type in second enabled inverter
 - Use M1PLY contacts
- PROBLEM! We need to squeeze a poly wire in between those contacts...
 - Use design rules to plan for space
Look at Gap

- You need to have enough space for minimum width poly to fit through gap

Start Making Room

- Push D-signal poly out of the way with minimum spacing to DIF
 - We’ll move it back later
- Make sure to continue to DRC at every step!
- Jog the poly around and through the gap with minimum spacing to M1PLY contact on both sides

Fit Things Back Together

- Now put big D-poly jog back as close as you can
Add M1PLY contacts for future connections

- Need to get Cb, C, D signals into the latch in the future
- Those will most likely be routed on some type of metal
- So we need the M1 metal connection at the bottom

Plan For Clock Routing

- Break M1 output connection on inverter to leave room for horizontal M1 routing
 - I'll eventually route C and Cb through the cell horizontally on M1
Bit Slice Plan

- Plan is to stitch these together to make a register
 - Inputs on top in M2
 - Outputs on bottom in M2
 - Clock and Clock-bar routed horizontally in M1

Need Second Latch

- Basically a copy of the first latch
 - But with reversed C and Cb connections
 - Copy the first layout…
Expand from Latch to F/F

- Select and copy the first latch
- Now I need to reverse the C and Cb connections

C/Cb Routing Plan

- Remember my C/Cb routing plan
 - Plan for where those wires can go
Remember my C/Cb routing plan
 - Plan for where those wires can go

Connect Clocks to 1st Latch
 - Adjust contact positions for the first enabled inverter
Now shift the contacts the other way for the second latch

- Makes the complementary C/Cb connection
Connect the Two Latches

- Q of first goes to D of second
- Don’t really need both top and bottom connections, but it doesn’t hurt
- Lower resistance paths

Note Extra Routing Channels

- Note that this vertical pitch, and this cell contents have left two additional M1 horizontal routing channels through the middle of the cell
Now Consider Output Inverters

- Two more inverters
 - Make them 2x size for output drive

Output Inverters

- Add the DIF for the output inverters
 - Remember I want to make them 2x size
Make Output Connections

- Add vdd, gnd, and output contacts
- Add poly gates
- Make output connections in M2
- Connect to 2nd latch and to 2nd inverter

Now Squeeze Inverter

- Select regions of the layout and stretch to move it all to a new spot
Now squeeze power supply contacts

Output inverters squeezed together

Note that D, Q, And Qb are routed vertically in M2
Squeeze vertically since I don’t need extra routing channels, and I don’t need to match with standard cells.

Add long NWELL and SUB contacts.

Add instances that abut
- Or use the “array” feature of the instance dialog
- Note that C and Cb are routed in horizontal M1
Put Four of them Together

D3 D2 D1 D0

Q3 Q2 Q1 Q0

C

Cb

Vdd

C

Cb

Vss

D2 D1 D0

Qb2 Q2 Qb1 Q1 Qb0 Q0

Zoom in to Cell Boundary

There's a little extra space
 Caused by wanting each latch to DRC on its own
 Could close this up by overlapping cells