Where are we?

- Lots of Layout issues
 - Line of diffusion style
 - Power pitch
 - Bit-slice pitch
 - Routing strategies
 - Transistor sizing
 - Wire sizing

Layout - Line of Diffusion

- Very common layout method
 - Start with a “line of diffusion” for each transistor type
 - Cross with poly to make transistors
 - This is the “type 2” NOR gate
Start with lines of diffusion for each transistor type.
Line of Diffusion in General

- Cross with Poly to make transistors

Line of Diffusion in General

- Now break and connect diffusion
 - There’s our NOR gate
Line of Diffusion in General

Now break and connect diffusion

- There's our NOR gate

Stick Diagrams

- You can plan things with paper and pencil using Stick Diagrams – Great for sketchbooks!!!
 - You'll need colored pencils
 - Draw lines for layers instead of rectangles
 - Then you can translate to layout
Gate Layout

- Layout can be very time consuming
 - Design gates to fit together nicely
 - Build a library of standard cells
- Standard cell design methodology
 - \(V_{DD} \) and GND should abut (standard height)
 - Adjacent gates should satisfy design rules
 - nMOS at bottom and pMOS at top
 - All gates include well and substrate contacts
Example: Inverter

- Horizontal N-diffusion and p-diffusion strips
- Vertical polysilicon gates
- Metal1 V_DD rail at top
- Metal1 GND rail at bottom
- 32 \(\lambda \) by 40 \(\lambda \)
- 9.6\(\mu \)m x 12\(\mu \)m

Example: NAND3

- Horizontal N-diffusion and p-diffusion strips
- Vertical polysilicon gates
- Metal1 V_DD rail at top
- Metal1 GND rail at bottom
- 32 \(\lambda \) by 40 \(\lambda \)
- 9.6\(\mu \)m x 12\(\mu \)m
Stick Diagrams

- *Stick diagrams* help plan layout quickly
 - Need not be to scale
 - Draw with color pencils

Wiring Tracks

- A *wiring track* is the space required for a wire
 - 1.2µ width, 1.2µ spacing from neighbor results in 2.4µ pitch
- Transistors also consume one wiring track

In our rules M1 and M2 width & spacing is 3λ, so pitch is 1.8µ
Well spacing

- Wells must surround transistors by 1.8\(\mu \)
 - Implies 3.6\(\mu \) (12\(\lambda \)) between opposite transistor flavors
 - Leaves room for one wire track

Area Estimation

- Estimate area by counting wiring tracks
 - Multiply by 8 to express in \(\lambda \), or by 2.4 to express in microns
Example: O3AI

- Sketch a stick diagram for O3AI and estimate area
 \(Y = (A + B + C) \cdot \bar{D} \)
Example: O3AI

Sketch a stick diagram for O3AI and estimate area

\[Y = (A + B + C) \cdot \overline{D} \]

\[Y = (A + B + C) \cdot \overline{D} \]

A B C D Vdd

A B C D

Y

GND
Example: O3AI

Sketch a stick diagram for O3AI and estimate area

\[Y = (A + B + C) \cdot \overline{D} \]

\[(A B C D) \]

Vdd

A B C D

Y

GND

Example: O3AI

Sketch a stick diagram for O3AI and estimate area

\[Y = (A + B + C) \cdot \overline{D} \]

\[(A B C D) \]

Vdd

A B C D

Y

GND
Example: O3AI

Sketch a stick diagram for O3AI and estimate area

\[Y = (A + B + C) \cdot D \]
Example: O3AI

Sketch a stick diagram for O3AI and estimate area

\[Y = (A + B + C) \cdot \bar{D} \]
Example: O3AI

- Sketch a stick diagram for O3AI and estimate area
 \[Y = (A + B + C)gD \]

Euler Paths

- A graphical method for planning complex gate layout
 - Take the transistor netlist and draw it as a graph
 - Note that the pull-up and pull-down trees can be duals of each other
 - Find a path that traverses the graph with the same variable ordering for pull-up and pull-down graphs
 - This guides you to a line of diffusion layout
Simple example: NOR

- Euler path is a tour of all edges
- Find a path that has the same ordering for pull-up and pull-down, i.e. A B
 - Vdd A 1 B Out
 - GND A Out B GND
- Another great bit of sketchbooking...

This Path Translates to Layout

- Find a path that has the same ordering for pull-up and pull-down, e.g. A B
 - You can also include all the internal nodes
 - Pull-up: Vdd A 1 B Out
 - Pull-Down: GND A Out B GND
 - Line of diffusion layout

- Vdd
 - A
 - B
 - Out
- GND
 - A
 - B
 - Out
Examples

- Switch to chalkboard for examples
 - Hopefully with colored chalk…

Layout Example: Flip Flop

- Simple D-type edge triggered flip flop
Need two copies of this for a full D flip flop
Zoom in on Latch

- Need two copies of this for a full D flip flop

Stick Diagram of Latch

- First add the gates
 - Note where outputs can be shared
 - Ignore details of signal crossings for now…
First add the gates
- Note where outputs can be shared
- Ignore details of signal crossings for now…
Stick Diagram of Latch

- First add the gates
 - Note where the signals are relative to the schematic
 - Note where additional connections are needed

Start With First Enabled Inv

- I’m using 5u power wires, 29u vertical pitch based on a C5x standard cell model from AMI
 - Probably overkill…
- Add DIF for N- and P-type transistors
 - Note 2x standard size because of series connection
Add Next Enabled Inverter

- Add two more poly gates for second enabled inverter
- Note that the two enabled inverters share an output (not connected yet)
- Note that I’ve added vdd! and gnd! For DRC
- I’ll deal with C-Cb crossover later…

Aside: Multiple Contacts

- Look at a model of transistor resistance
Contact Option #1

- Total equivalent resistance = 56.1 Ohms
 - Metal resistance = 0.05 Ω/square
 - Contact resistance = 5 Ω/contact
 - Active resistance = 70 Ω/square
 - Gate resistance = 50 Ω/square
 - Active resistance 70 - contact to gate

Contact Option #2

- Total equivalent resistance = 105.1 Ohms
Contact Option #3

- Total equivalent resistance = 24.7 Ohms
- So, put in as many contacts as will fit along side a wide gate…

Meanwhile, Add inverter

- Note that it’s back to standard size
- Shares vdd/gnd connection with enabled inverter
- Minimum spacing for all transistors so far
 - Incremental DRC at EVERY step!
Finish Inverter (mostly)

- Make inverter output connections
 - Don’t connect yet
 - I’m going to use M1 as a horizontal layer
 - Which means being careful about vertical use of M1

Make Feedback Connections

- Output of inverter (connected in M1 for now) goes to input of 2nd enabled inverter
- Output of enabled inverters goes to input of inverter
 - Note that output of enabled inverters goes through POLY
Deal With C/Cb Crossover

- Start by cutting the “select” gates of the enabled inverters

Connect the C Input

- Prepare for M1 crossover in C wire
 - C is N-type in first enabled inverter, P-type in second enabled inverter
 - Use M1PLY contacts
- PROBLEM! We need to squeeze a poly wire inbetween those contacts...
 - Use design rules to plan for space
Look at Gap

- You need to have enough space for minimum width poly to fit through gap

Start Making Room

- Push D-signal poly out of the way with minimum spacing to DIF
 - We’ll move it back later
- Make sure to continue to DRC at every step!
- Jog the poly around and through the gap with minimum spacing to M1PLY contact on both sides

- Fit Things Back Together

- Now put big D-poly jog back as close as you can
Add M1PLY contacts for future connections

- Need to get Cb, C, D signals into the latch in the future
- Those will most likely be routed on some type of metal
- So we need the M1 metal connection at the bottom

Plan For Clock Routing

- Break M1 output connection on inverter to leave room for horizontal M1 routing
 - I'll eventually route C and Cb through the cell horizontally on M1
Bit Slice Plan

- Plan is to stitch these together to make a register
 - Inputs on top in M2
 - Outputs on bottom in M2
 - Clock and Clock-bar routed horizontally in M1

Need Second Latch

- Basically a copy of the first latch
 - But with reversed C and Cb connections
 - Copy the first layout…
Expand from Latch to F/F

- Select and copy the first latch
- Now I need to reverse the C and Cb connections

C/Cb Routing Plan

- Remember my C/Cb routing plan
 - Plan for where those wires can go
C/Cb Routing Plan

- Remember my C/Cb routing plan
 - Plan for where those wires can go

Connect Clocks to 1st Latch

- Adjust contact positions for the first enabled inverter
Connect Clocks to 2nd Latch

- Now shift the contacts the other way for the second latch
 - Makes the complementary C/Cb connection

Connect Clocks to 2nd Latch

- Now shift the contacts the other way for the second latch
 - Makes the complementary C/Cb connection
Connect the Two Latches

- Q of first goes to D of second
- Don’t really need both top and bottom connections, but it doesn’t hurt
- Lower resistance paths

Note Extra Routing Channels

- Note that this vertical pitch, and this cell contents have left two additional M1 horizontal routing channels through the middle of the cell
Now Consider Output Inverters

- Two more inverters
- Make them 2x size for output drive

Output Inverters

- Add the DIF for the output inverters
 - Remember I want to make them 2x size
Make Output Connections

- Add vdd, gnd and output contacts
- Add poly gates
- Make output connections in M2
- Connect to 2nd latch and to 2nd inverter

Now Squeeze Inverter

- Select regions of the layout and stretch to move it all to a new spot
Keep Squeezing

- Now squeeze power supply contacts

Squeezed Version

- Output inverters squeezed together
- Note that D, Q, And Qb are routed vertically in M2
Final D-Type Flip Flop

- Squeeze vertically since I don’t need extra routing channels, and I don’t need to match with standard cells
- Add long NWELL and SUB contacts

Put Four of them Together

- Add instances that abut
 - Or use the “array” feature of the instance dialog
- Note that C and Cb are routed in horizontal M1
Put Four of them Together

Zoom in to Cell Boundary

- There's a little extra space
 - Caused by wanting each latch to DRC on its own
 - Could close this up by overlapping cells