Review sheet for midterm exam

The exam will cover materials from the lectures and assigned readings from the textbook. The exam will consist of multiple choice and short answer questions. The following topics are likely to be included on the exam, but the list is not all-inclusive so please thoroughly review your lecture notes and assigned readings.

Basics of geographic representation
Definitions of GIS and GIScience
Types and examples of spatial data
Vector data structures
Raster data structures
Spatial thinking and why it is important
Scale
Topology
Converting between data structures

Cartography
Purpose and function of maps
Reference maps
Thematic maps
Data measurement levels
Elements of map design
Mapping point data
Mapping line data
Mapping area/polygon data
Choropleth color schemes
Interpreting map scales (representative fractions & scale bars)

Data management & data quality
Decimal vs. binary numbers
Data types (integer, floating point, text, etc.)
Database management systems
Flat file data model and terminology
Relational database model and terminology
Database relationships
Relating and joining data
Attribute queries
Spatial queries
Boolean operators
Metadata
Data accuracy and precision
Sources and types of error
Assessing error
Creating an error matrix to measure classification accuracy
Root mean square error

Geospatial technologies
In-situ data collection
Global Navigation Satellite Systems (GNSS)
 How GPS works
 Components of GPS
 Sources of GPS error
 Technologies to improve accuracy
 GPS applications

Remote sensing
 Active vs. passive sensing
 Spectral signatures
 Spatial resolution
 Spectral resolution
 Temporal Resolution
 Orthophotography

Map projections & coordinate systems
Great circles and small circles
Characteristics of meridians and parallels
How to determine latitude and longitude without a GPS
The graticule
Models of the earth’s shape: spheroids, ellipsoids, geoids
Geodetic surveys
Horizontal and vertical datum
Selecting an appropriate map projection
Types of developable surfaces
Standard points/lines
Cylindrical projections
 Mercator
 Transverse Mercator
 Mollweide
 Equirectangular
 Gall-Peters
Azimuthal/planar projections
 Gnmonic
Orthographic
Conical projections
 Albers equal area
 Lambert conformal conic
Compromise projections
State plane coordinates
Universal Transverse Mercator coordinates

Spatial analysis of vector and raster data
Buffering
Overlay
Types of overlay operations
Raster buffering
Local raster operations
Map algebra
Neighborhood raster operations
Spatial frequency and filtering
Zonal statistics